

Copyright © 2017 Elisabeth Moore

All Rights Reserved

i

Abstract

DuringWorldWar II, the Enigmamachine was used as a message encryption tool by the

German military. While it was believed that the Enigma machine produced an unbreakable

code, this turned out to not be the case. This thesis begins with a summary of six versions

of the Enigma, five that were actually used in the field, and a theoretical version that

would have maximized security. An analysis of security is done, in which combinatorics

is used to count the number of possible unique settings for each version of the machine.

Estimates are also provided for the time required to break each version of the machine using

a brute-force attack with various processing speeds that were achievable at various times in

history. Finally, descriptions are included of three Enigma simulators constructed for this

thesis. These simulators include a three-dimensional paper simulator, a digital simulator

written using the Python programming language, and an electromechanical simulator built

to resemble an actual Enigma machine.

ii

Contents

1 Background 1

2 Machine Description 4

3 Analysis of Security 8

4 Decryption Speeds 17

5 Simulators 22

Acknowledgments 29

Bibliography 30

Appendix A 31

Appendix B 33

iii

1 Background

The original Enigma machine was invented by Arthur Scherbius (Figure 1), a German electrical

engineer, late in World War I [4]. Scherbius’s design was for an electromechanical, rotor-driven

encryption machine, the first of its kind to be patented. After many design iterations, Scherbius

started marketing his most successful design, the Enigma D, to businesses throughout Germany

[7]. He also marketed the machine to the German military, which declined it at first. It was

eventually picked up by the German military, just over a decade before the start of World War

II, however, when the Germans discovered their codes from World War I had been broken [4].

Figure 1: Arthur Scherbius; image reproduced with permission of Crypto Museum [7]

Poland, realizing the likelihood of another war, began work on decrypting the Enigma. Not

having access to the military version of the machine that was in development, the three members

of the Polish Cipher Bureau, Marian Rejewski (Figure 2), Henryk Zygalski, and Jerzy Rózyki,

focused their efforts on decrypting the commercial one. Using information about the workings

of the Enigma and dozens of intercepted messages, the Cipher Bureau developed a machine

called the Bomba kryptologiczna (Figure 3) that could decrypt the commercial Enigma [5, 7].

1

Figure 2: Marian Rejewski; image reproduced from WikiCommons [14] under CC-BY-SA

Figure 3: The Bomba; image reproduced with permission of Crypto Museum [7]

2

Poland continued its work on the Enigma machine until Germany’s invasion at the beginning

of World War II. In order to preserve the work that had been done up to that point, the Poles

smuggled all of their collected work on the machine to Great Britain via France [7]. The British

Cipher Bureau, located in Bletchley Park, England (Figure 4) and led by Alan Turing (Figure

5), used the information provided by the Polish Cipher Bureau to build the Bombe (Figure 6),

a machine capable of decrypting the military version of the Enigma [5].

Figure 4: Bletchley Park, the location of British Enigma decryption work; image reproduced
with permission of Bletchley Park Trust [2]

Figure 5: Alan Turing; image reproduced with permission of Crypto Museum [7]

3

Figure 6: The Bombe, as designed by Alan Turing; image reproduced from WikiCommons [10]
under the Creative Commons CC0 1.0 Universal Public Domain Dedication

2 Machine Description

The Enigmamachine (Figure 7) as it was used used throughoutWorldWar II consisted of several

components: a keyboard for entering an input message, a plugboard, rotors, and a reflector, all

through which the input message was encrypted or decrypted, and a lampboard for displaying

the output message.

When a letter was pressed on the keyboard, an electric current was transmitted through

the machine that eventually became the output letter. The current first passed through the

plugboard, where a series of sockets corresponded to the letters on the keyboard (Figure 8).

The sockets could be left open or connected to each other in pairs via a collection of cables. If

two sockets were connected, either letter connected would be converted to the other when the

current passed through the plugboard. If a letter passed through an open socket, it would leave

the plugboard unchanged [4].

4

Figure 7: Enigma machine with labeled components; image reproduced with permission of the
National WWII Museum [6]

After the plugboard, the current would pass through a series of wired wheels, called rotors

(Figure 9). Each rotor had 26 electrical contacts on each face, one to represent each letter. The

contacts on one side were wired to the contacts on the other, but not straight across, scrambling

the letters as they passed through a rotor. In this way, a letter would be swapped for another

every time it passed through a rotor. Rotors could be rotated into any of 26 positions before

being inserted into the machine and a ring of letters around each rotor could also be rotated

into any of 26 positions without the wiring also rotating. The physical wiring of the rotors was

fixed, though, and only a limited number of different rotor wirings were produced. A series of

multiple rotors was used in the machine, lined up from left to right, resulting in letters being

swapped for others multiple times during one round of encryption or decryption [4].

5

Figure 8: Close-up of a plugboard; image reproduced from WikiCommons [10] under the GNU
Free Documentation License

Every time a key was pressed on the keyboard, the far right rotor would rotate forward by one

letter. Every time that rotor rotated 26 times, or through the whole alphabet, the rotor to its left

would rotate forward by one letter. Similarly, every time this rotor rotated through the whole

alphabet, the rotor to its left would rotate forward by a letter. This changed the operation of the

machine from being a monoalphabetic cipher to being a polyalphabetic cipher, meaning that

the same input letter would not necessarily produce the same output letter every time, and that

different input letters could produce the same output letter. This change resulted in the Enigma

being much more difficult to break than substitution ciphers that preceded it [4].

After the current had passed through all of the rotors, it would enter a reflector. This was

essentially half of a rotor, a wired wheel with contacts on only a single side. Every letter on the

reflector was connected to another, resulting in 13 connections. Similarly to the plugboard, the

connected letters would be swapped for each other by the wiring. Like the rotors, the wiring

was fixed and reflectors with only a limited number of different wirings were ever produced [4].

The current would pass through the rotors in reverse order after the reflector, and then again

through the plugboard, before finally being displayed through the lampboard as the final output.

6

Figure 9: Exploded view of an Enigma rotor; image reproduced with permission of Crypto
Museum [7]

This meant that, in total, each letter would pass through the plugboard and rotors twice and the

reflector a single time. Figure 10 shows an example of the path current representing a single

letter would follow through the machine during encryption or decryption [4].

It it important to note that the symmetry of the path followed by the current through the

machine meant that passing an encrypted message back through the machine would decrypt

the message. Using the same initial configuration and inputting the encrypted message would

result in the message being decrypted as it passed through the machine, allowing the decrypted

message to be read off from the lampboard, one letter at a time, just as the encrypted message

was read from the lampboard starting with the same initial configuration of the machine. It is

also important to note that even with the limited number of different rotors and reflectors that

were actually produced, this along with the large number of possible wirings for the plugboard

produced a vast number of possible initial configurations for an Enigma.

7

Figure 10: Example of path followed by current during encryption or decryption; figure created
by the author

3 Analysis of Security

During World War II, the Germans were convinced of the Enigma’s unbreakability. This was

due to the massive number of initial configurations produced by the various settings on the

machine, each of which would produce a distinct output. Even so, as the war progressed, the

Germansmade improvements to themachine that increased the number of initial configurations,

and, therefore, its security.

The Enigma D (Figure 11) was released in 1926. It featured three interchangeable rotors as

well as a single reflector, all of which could be rotated before being inserted into the machine

[7]. This resulted in a total of 4.8 × 1010, or 48,190,861,056 to be exact, possible initial

configurations. To see how this value can be determined, consider the following:

• Rotor arrangements: P(3, 3) = 6

• Rotor and reflector rotations: (263) · 26 = 17,576 · 26 = 456,976

8

Figure 11: Enigma D; image reproduced with permission of Crypto Museum [7]

• Ring settings: 263 = 17,576

• Total: 6 · 456,976 · 17,576 = 48,190,861,056.

In 1932, the Wehrmacht Enigma (Figure 12), also known as the Services Enigma or Enigma

I, was introduced by the German military. It featured notable improvements over the commer-

cial design, mainly the addition of the plugboard and two reflectors to select from. However,

unlike Scherbius’s design, these reflectors were fixed and could not be rotated before be-

ing inserted. The rotors, however, could be rotated. In typical military usage, 10 cables

were used on the plugboard to connect 20 sockets [7]. This gave a total of 5.6 × 1023, or

558,785,174,101,703,220,672,000 to be exact, possible initial configurations. To see how this

value can be determined, consider the following:

• Plugboard socket selections: C(26, 20) = 230,230

• Plugboard plug configurations: 19 · 17 · 15 · 13 · 11 · 9 · 7 · 5 · 3 · 1 = 654,729,075

• Rotor arrangements: P(3, 3) = 6

9

Figure 12: Enigma I; image reproduced with permission of Crypto Museum [7]

• Reflector selection: C(2, 1) = 2

• Rotor rotations: 263 = 17,576

• Ring settings: 263 = 17,576

• Total: 230,230 ·654,729,075 ·6 ·2 ·17,576 ·17,576 = 558,785,174,101,703,220,672,000.

In 1938, the security of the Wehrmacht Enigma was further increased with the addition of two

additional rotors to choose from, giving a total of five rotors from which three were selected

at a time [7]. This gave a tenfold increase in security, since the number of possible rotor

arrangements increased from P(3, 3) = 6 to P(5, 3) = 60, bringing the total number of possible

initial configurations up to 5.6 × 1024, or 5,587,851,741,017,032,206,720,000 to be exact.

The Kriegsmarine Enigma or M1 Enigma, specific to the German Navy, was developed in

1932. It was similar to the Enigma I, featuring only slight changes in the design of the carrying

case [7]. Hence, the number of initial configurations possible with the the M1 was the same as

that with the Enigma I.

The Enigma M4 (Figure 13), also specific to the German Navy, replaced the M1 in 1942,

10

Figure 13: Enigma M4; image reproduced with permission of Crypto Museum [7]

in response to German suspicions that the Allied Powers had found a way to read messages

encrypted with the Enigma. The M4 added three more rotors to the five that could be selected

from for the Wehrmacht, making for a total of eight rotors to choose from. There was also

an additional slot for a thinner rotor, of which two were provided. All four of these rotors

had rings which could be rotated, and the rotors themselves could also be rotated before being

inserted into the machine [7]. Additionally, it had two different reflectors from the Wehrmacht

Enigma, although since the Wehrmacht pair were not used, this did not impact the number of

initial configurations possible. The M4 saw a huge improvement over the Wehrmacht Enigma,

11

allowing for 4.2×1028, or 42,306,743,101,588,154,243,518,464,000 to be exact, possible initial

configurations. To see how this value can be determined, consider the following:

• Plugboard socket selections: C(26, 20) = 230,230

• Plugboard plug configurations: 19 · 17 · 15 · 13 · 11 · 9 · 7 · 5 · 3 · 1 = 654,729,075

• Rotor arrangements: P(8, 3) = 336

• Thin rotor arrangement: P(2, 1) = 2

• Reflector selection: C(2, 1) = 2

• Rotor rotations: 264 = 456,976

• Ring settings: 264 = 456,976

• Total: 230,230 · 654,729,075 · 336 · 2 · 2 · 456,976 · 456,976

= 42,306,743,101,588,154,243,518,464,000.

The Germans gave strict instructions for the use of the Enigma machine in the field, for example

requiring the use of exactly 10 plugboard cables, which of course limited the number of possible

initial configurations. If these restrictions had been removed and a theoretical machine with the

maximum security possible had been employed, the number of possible initial configurations

for the three-rotor version of the Enigma would have increased to 2.2 × 10117, or to be exact,

the following number:

2,219,905,255,326,754,558,321,796,279,240,740,945,784,849,756,500,641,611,

360,181,393,092,780,349,124,164,128,934,846,831,282,900,646,672,465,920,

000,000,000.

Although the plugboard could accommodate anywhere from 0 to 13 cables, the Germans limited

the number used in the field to exactly 10 to simplify the key information that had to be indicated

12

for each day’s initial configuration. Allowing for any number of cables from 0 to 13 would

obviously have increased the number of possible initial configurations of just the plugboard.

With exactly 10 cables, the number of possible configurations of just the plugboard results from

multiplying the number C(26, 20) = 230,230 of ways to choose 20 sockets to connect with 10

cables times the number 19 · 17 · 15 · 13 · 11 · 9 · 7 · 5 · 3 · 1 = 654,729,075 of ways to connect

the 20 sockets after they have been chosen. This value is 230,230 · 654,729,075 = 1.5 × 1014,

or 150,738,274,937,250 to be exact. To find the number of possible configurations of just the

plugboard without the number of cables used dictated, we must count the number of ways to

configure the plugboard for each number of cables from 0 through 13 separately, and then add

these results. The outcome of adding these results is 5.3 × 1014, or 532,985,208,200,576 to be

exact. To see how this value can be determined, consider the following:

• For 0 cables:

Number of ways to choose the sockets: C(26, 0) = 1

Number of ways to connect the sockets: 1

Total: 1 · 1 = 1

• For 1 cable:

Number of ways to choose the sockets: C(26, 2) = 325

Number of ways to connect the sockets: 1

Total: 325 · 1 = 325

• For 2 cables:

Number of ways to choose the sockets: C(26, 4) = 14,950

Number of ways to connect the sockets: 3 · 1 = 3

Total: 14,950 · 3 = 44,850

• For 3 cables:

13

Number of ways to choose the sockets: C(26, 6) = 230,230

Number of ways to connect the sockets: 5 · 3 · 1 = 15

Total: 230,230 · 15 = 3,453,450

• For 4 cables:

Number of ways to choose the sockets: C(26, 8) = 1,562,275

Number of ways to connect the sockets: 7 · 5 · 3 · 1 = 105

Total: 1,562,275 · 105 = 164,038,875

• For 5 cables:

Number of ways to choose the sockets: C(26, 10) = 5,311,735

Number of ways to connect the sockets: 9 · 7 · 5 · 3 · 1 = 945

Total: 5,311,735 · 945 = 5,019,589,575

• For 6 cables:

Number of ways to choose the sockets: C(26, 12) = 9,657,700

Number of ways to connect the sockets: 11 · 9 · 7 · 5 · 3 · 1 = 10,395

Total: 9,657,700 · 10,395 = 100,391,791,500

• For 7 cables:

Number of ways to choose the sockets: C(26, 14) = 9,657,700

Number of ways to connect the sockets: 13 · 11 · 9 · 7 · 5 · 3 · 1 = 135,135

Total: 9,657,700 · 135,135 = 1,305,093,289,500

• For 8 cables:

Number of ways to choose the sockets: C(26, 16) = 5,311,735

Number of ways to connect the sockets: 15 · 13 · 11 · 9 · 7 · 5 · 3 · 1 = 2,027,025

14

Total: 5,311,735 · 2,027,025 = 10,767,019,638,375

• For 9 cables:

Number of ways to choose the sockets: C(26, 18) = 1,562,275

Number of ways to connect the sockets: 17 · 15 · 13 · 11 · 9 · 7 · 5 · 3 · 1 = 34,459,425

Total: 1,562,275 · 34,459,425 = 53,835,098,191,875

• For 10 cables:

Number of ways to choose the sockets: C(26, 20) = 230,230

Number of ways to connect the sockets: 19 · 17 · 15 · 13 · 11 · 9 · 7 · 5 · 3 · 1 = 654,729,075

Total: 230,230 · 654,729,075 = 150,738,274,937,250

• For 11 cables:

Number of ways to choose the sockets: C(26, 22) = 14,950

Number of ways to connect the sockets: 21·19·17·15·13·11·9·7·5·3·1 = 13,749,310,575

Total: 14,950 · 13,749,310,575 = 205,552,193,096,250

• For 12 cables:

Number of ways to choose the sockets: C(26, 24) = 325

Number of ways to connect the sockets: 23 · 21 · 19 · 17 · 15 · 13 · 11 · 9 · 7 · 5 · 3 · 1 =

316,234,143,225

Total: 325 · 316,234,143,225 = 102,776,096,548,125

• For 13 cables:

Number of ways to choose the sockets: C(26, 26) = 1

Number of ways to connect the sockets: 25 · 23 · 21 · 19 · 17 · 15 · 13 · 11 · 9 · 7 · 5 · 3 · 1 =

7,905,853,580,625

Total: 1 · 7,905,853,580,625 = 7,905,853,580,625.

15

Thus the total number of possible configurations of the entire plugboard with no restrictions on

the numbers of cables used is the following number:

1 + 325 + 44,850 + 3,453,450 + 164,038,875 + 5,019,589,575 + 100,391,791,500

+ 1,305,093,289,500 + 10,767,019,638,375 + 53,835,098,191,875

+ 150,738,274,937,250 + 205,552,193,096,250 + 102,776,096,548,125

+ 7,905,853,580,625

= 532,985,208,200,576.

For theWehrmacht Enigma late in the war, 5 rotors were provided, from which 3 were selected

each time the machine was used. Each rotor had to be hand-built, an extremely time-consuming

and difficult process. In order to speed up production of Enigma machines, the number of rotors

available was limited so that the machines could be produced more rapidly. Many more rotors

were theoretically possible, though, 26! = 403,291,461,126,605,635,584,000,000 to be exact,

since A could be wired to any of the 26 letters in the alphabet, B could be wired to any of the

remaining 25 letters, and so forth.

The same principle applied to reflectors, with some slight modifications. Specifically,

reflector contacts were always wired in pairs so that a letter could not be wired to itself. A could

be wired to any of the remaining 25 letters; B, or C if A had been wired to B, could be wired

to any of the 23 letters that now remained, and so on. Thus, the number of reflectors that were

theoretically possible was 25 · 23 · 21 · 19 · 17 · 15 · 13 · 11 · 9 · 7 · 5 · 3 · 1 = 7,905,853,580,625,

although only twowere provided. Furthermore, although German operating instructions did not

allow for rotation of the reflector before it was placed in the machine, nothing in the mechanism

prevented this.

Combining all of these variable components in an Enigma results in the previously-noted

theoretical number of possible initial configurations for the three-rotor version of the machine,

2.2 × 10117, or to be exact, the following number:

2,219,905,255,326,754,558,321,796,279,240,740,945,784,849,756,500,641,611,

16

360,181,393,092,780,349,124,164,128,934,846,831,282,900,646,672,465,920,

000,000,000.

To see how this value can be determined, consider the following:

• Plugboard: 532,985,208,200,576

• Rotor arrangements: P(403,291,461,126,605,635,584,000,000, 3)

= 65,592,937,459,144,468,297,405,473,480,371,753,615,896,841,298,988,710,328,

553,805,190,043,271,168,000,000

• Reflector selection: 7,905,853,580,625

• Rotor and reflector rotations: 264 = 456,976

• Ring settings: 263 = 17,576

• Total: 532,985,208,200,576 · 65,592,937,459,144,468,297,405,473,480,371,753,615,

896,841,298,988,710,328,553,805,190,043,271,168,000,000 · 7,905,853,580,625 ·

456,976 · 17,576

= 2,219,905,255,326,754,558,321,796,279,240,740,945,784,849,756,500,641,611,

360,181,393,092,780,349,124,164,128,934,846,831,282,900,646,672,465,920,

000,000,000.

4 Decryption Speeds

Despite the fact that the Enigma was cracked by the Allies by the end of World War II, it could

only be decrypted with the use of the Bombe. Only a few Bombe units were built, meaning

that despite the breaking of the Enigma machine, the ability to make use of this was limited to

those who had access to a Bombe. However, using the Bombe still took a significant amount

of information. Specifically, one had to have information that would help point to the initial

17

configuration. Without this information, the Bombe would still have to potentially try every

possible initial configuration before a message could be decrypted [10].

Bearing this is mind, the Enigma machine had the potential to be a valid form of encryption

long after World War II, due to the length of time it would take to break it through a brute-force

attack. Unless one’s message was specifically intercepted by someone with access to a Bombe

and whom had the required information, breaking an Enigma-encrypted message would take

prohibitively long.

In a brute-force attack, one tries every single possible combination in order to find the

correct decryption. To use a simple example, in a brute-force attack on a 3-digit combination

lock, one would try every combination starting with 1-1-1, going to 1-1-2, 1-1-3, and so on,

until the correct combination was found. In the worst case scenario, every single one of the 999

combinations would have to be tried.

In the worst-case scenario for a brute-force attack on an Enigma machine, one would have

to try every initial configuration possible. However, one would not have to try to decrypt the

entire message to determine if the correct initial configuration had been assumed. To this point,

to ensure that the correct settings were being used each time, German users encrypting with

Enigma in the field were instructed to begin with the a user-chosen three-letter sequence, say

XYZ, being encrypted twice. Then on the other end, if the decrypted message began with a

repeated three-letter sequence, XYZXYZ in this case, the recipient of the message would know

that the correct initial configuration had very likely been used. If not, the recipient would know

that an incorrect initial configuration had been used.

This meant that to check if an assumed initial configuration was correct, one could begin

by comparing only the first and fourth letters in the attempted decryption. If these letters did

not match, it would be known that the assumed initial configuration was incorrect. If they did

match, then the second and fifth letters could be compared. If these letters did not match, it

would again be known that the assumed initial configuration was incorrect. If they did match,

then the third and sixth letters could be compared. Only if all three pairs matched was it

18

necessary to look any further in an attempted decryption. On average, 25
26 of the time one should

be able to stop after the fourth letter; upon having to proceed, 25
26 of the time one should be able

to stop after the fifth letter; and again if having to proceed, 25
26 of the time one should be able

to stop after the sixth letter. This meant that, in total, one should only have to decrypt more

than six letters 1
263 =

1
17,576 of the time. After those initial six letters, decrypting ten additional

letters and checking to see if that portion of the decrypt was legible should suffice to indicate

if the message should be decrypted in full. While false positives, or incorrect configurations

that might by chance decrypt the first ten letters of the message into a readable phrase, were

possible, they were unlikely enough that it would be worth fully decrypting any message that

was readable through the first ten letters.

To check a single initial configuration by hand would have taken roughly one and a half

minutes, or 90 seconds, on average. Most of the time required for one to check an initial

configuration by hand would be spent on setup; the time spent actually decrypting letters after

that is insignificant. One of the first computers, ENIAC,was able to carry out 5000 computations

per second when it was completed in 1946 [11]. The CDC 6600, the first supercomputer, could

carry out up to 3 million operations per second [9]. This is compared to the processing power

available to the typical university student in 2017, who uses a calculator that can perform

1.16 million operations per second [13, 15], and a computer that, on average, can perform 83

billion operations per second [1,13]. The average modern-day supercomputers can perform 17

quadrillion operations per second [12]; the world’s current fastest supercomputer, the Sunway

TaihuLight, can perform 93 quadrillion operations per second [12].

For the commercial Enigma, decrypting a single letter involved 8 calculations: stepping the

rotor, going through each of the three rotors, going through the reflector, and back through each

of the three rotors. The Wehrmacht and Kriegsmarine Enigmas required 10 calculations; the

number of rotors and reflectors available to choose from did not affect the number of calculations

required, but going through the plugboard at the beginning and end added two calculations.

The M4 Enigma, because it introduced an extra rotor, required two extra calculations to decrypt

19

each letter, bringing its total up to 12 calculations per letter. The theoretical Enigma, since it

assumes a 3-rotor Enigma would take only 10 calculations per letter.

Finding the maximum amount of time it would take for a particular system to cryptanalyze

a message encrypted with a given version of the Enigma can be done as follows. First, the time

required when decrypting by hand is simple; since the time given is per initial configuration,

one only needs to multiply the number of initial configurations by the length of time taken to test

each one. For computer decryption speeds, one first divides the number of initial configurations

that a version produces by 17,576 to find the number of initial configurations that would have

to be checked beyond the sixth letter. That number is then multiplied by 16 and again by the

number of calculations needed per letter for that version of the Enigma to find the total number

of calculations that would need to be performed to check every initial configuration. When

working with the human decryption speed, this step is skipped, since that speed is per initial

configuration rather than per calculation. One then divides by the number of calculations the

system can perform per second to find the number of seconds it would take to run all of the

necessary calculations. Once this number is found, it can be converted into other units of time

as desired. Examples of these calculations for human and one type of computer can be seen

below. The results for the given systems and versions of the Enigma machine are summarized

in the tables that follow (Figures 14, 15).

To determine the maximum time it would take for a human to find the correct initial

configuration for a commercial Enigma, one multiplies the number of initial configurations

possible with a commercial Enigma by the time it takes for a human to test a single configuration.

• Initial configurations: 48,190,861,056

• Time taken per initial configuration: 90 seconds

• Total time: 48,190,861,056 · 90 = 4,337,177,495,040, or 4.3 × 1012, seconds

This time can be converted into years by dividing by 3600 (the number of seconds in an hour),

then by 24 (the number of hours in a day), followed by 365 (the number of days in a year).

20

To determine the maximum time it would take the Sunway TaihuLight to find the correct

initial configuration for the theoretical Enigma, one divides the number of initial configurations

possible by 17,576 to account for how often the repeated sequence was correct, and multiplies

by the number of letters that need to be checked (16) and by the number of calculations required

per letter for that version of the the Enigma (10). This number is then divided by the Sunway

TaihuLight’s speed.

• Initial configurations: 2.2 × 10117

• Repeated sequence: 17,576

• Number of letters: 16

• Calculations per letter: 10

• Computer speed: 93 quadrillion, or 9.3 × 1016, calculations per second

• Total time:
((

2.2 × 10117 ÷ 17,576
)
· 16 · 10

)
÷ 9.3 × 1016 = 2.2 × 1098 seconds

Like with the calculation above, this time can be converted to years by dividing appropriately,

giving 7.0 × 1090 years.

Commercial Original Wehrmacht Kriegsmarine M4 Theoretical
Human 4.3 × 1012 5.0 × 1025 5.0 × 1026 3.8 × 1030 2.0 × 10119

ENIAC 6.8 × 104 1.0 × 1018 1.0 × 1019 9.1 × 1022 4.0 × 10111

CDC 6600 119 1.7 × 1015 1.7 × 1016 1.5 × 1020 6.8 × 10108

University Calculator 302 4.4 × 1015 4.4 × 1016 2.9 × 1020 1.8 × 10109

University Computer 4.2 × 10−3 6.3 × 1010 6.3 × 1011 5.6 × 1015 2.4 × 10104

Average Supercomputer 2.0 × 10−8 3.0 × 105 3.0 × 106 2.7 × 1010 1.2 × 1099

Sunway TaihuLight 3.8 × 10−9 5.5 × 104 5.5 × 105 4.9 × 109 2.2 × 1098

Figure 14: Time, in seconds, to cryptanalyze the Enigma by each system; figure created by
author

Overall, if someone utilized a theoretical Enigma and kept the initial configurations secure, it

would clearly be impossible to carry out a brute-force attack on a useful timescale. Having to

21

Commercial Original Wehrmacht Kriegsmarine M4 Theoretical
Human 1.4 × 105 years 1.6 × 1018 years 1.6 × 1019 years 1.2 × 1023 years 6.3 × 10111 years
ENIAC 18.9 hours 3.2 × 1010 years 3.2 × 1011 years 2.9 × 1015 years 1.3 × 10104 years
CDC 6600 119 seconds 5.4 × 107 years 5.4 × 108 years 4.8 × 1012 years 2.2 × 10101 years
University Calculator 302 seconds 1.4 × 108 years 1.4 × 109 years 9.2 × 1012 years 5.7 × 10101 years
University Computer 4.2 milliseconds 2.0 × 103 years 2.0 × 104 years 1.8 × 108 years 7.6 × 1096 years
Average Supercomputer 20 nanoseconds 3.5 days 34.7 days 856 years 3.8 × 1091 years
Sunway TaihuLight 38 nanoseconds 15.3 hours 6.4 days 155 years 7.0 × 1090 years

Figure 15: Time, in alternate units, to cryptanalyze the Enigma by each system; figure created
by author

try every initial configuration would necessitate an amount of time to break that is on par with

those required for modern encryption methods.

5 Simulators

The length of time it would take to carry out a brute-force attack on a full theoretical Enigma

machine puts it on par with modern encryption methods. Despite this, the separate steps behind

the cipher are mathematically very simple. This allows for there to be a multitude of ways

to simulate the workings of an Enigma machine. The simplest of these ways is to build a

three-dimensional, completely mechanical model of the diagram shown in Figure 10. Franklin

Heath Ltd., in the United Kingdom, created a model of the Enigma using rings cut out of paper

(Figures 16, 17). When rotated around a spindle, in this case a Pringles® can, the encoding of

each letter can be tracked all the way through the machine.

This simulator’s greatest benefit comes from the lack of technical or mathematical skill

required to create and use it; assembling a paper Enigma simulator takes less than an hour and

requires nothing more than scissors, tape, and a cardboard tube. While this method gives an

extremely clear picture of how an Enigma machine works and allows one to see exactly what is

happening as the rotors progress, it is an extremely slow method and it is very prone to error.

There are numerous electronic simulators built with languages such as C++, Java, and

Python. These simulators are easy to operate; in even the most complicated of instances,

they usually only involve selecting the plugboard and rotor settings. However, without a deep

22

Figure 16: Fully-assembled paper Enigma simulator; image reproduced with permission of
Franklin Heath Ltd. [3]

Figure 17: Rings used in the paper Enigma simulator; image taken by the author

23

understanding of the language being used, one has to take it on faith that the simulator was

written correctly and, correspondingly, that the message was encoded properly. The code

also leaves one without an understanding of what the Enigma machine actually was. Running

the code allows one to encrypt and decrypt a message, but ultimately leaves one without an

understanding of what the machine even looked like, let alone the workings involved.

For this project, an Enigma simulator was written in Python, a portion of the code for which

can be seen in Figure 18. The complete code for this Python simulator can be seen in Appendix

A. The code can simulate a commercial or Wehrmacht Enigma in its entirety. In the case of

Python and C++, the most common languages used for Enigma simulators after Java, there is

the added problem that the user must be able to make minor modifications to the program, as

is usually necessary to change the rotors, reflector, and plugboard.

The code written allows the user to choose from the rotors and reflectors available for

the commercial and Wehrmacht Enigmas and to specify the plugboard connections (Figures

19). Those, along with the ring and settings, gives the user complete control over the initial

configuration of the machine. Once the program is run, it will return the encrypted message

(Figure 20). If an encrypted message was provided, the decrypted message will be returned.

The best simulators combine the three-dimensional and code to produce a physical replica

of an Enigma machine as it would have been used. S&T GeoTronics [8] provides a kit, the

Enigma Mark 4, from which a working model of an Enigma machine can be built. Several

other companies produce similar kits. The Enigma Mark 4 is run by an Arduino board and a

USB power source, but otherwise it accurately simulates both a Wehrmacht and Kriegsmarine

Enigma. For this project, an EnigmaMark 4 kit was assembled (Figures 21, 22). Its major flaw,

like the coded simulators, is that it does not show the workings of the rotors and reflectors.

There is also a considerable amount of technical skill required to assemble an Enigma

model; the Mark 4 requires a knowledge of soldering, programming, and woodworking to be

fully assembled. Although pre-assembled kits are available, the cost can be prohibitive.

Additional photographs of the Mark 4 Enigma during assembly can be seen in Appendix B.

24

class Machine:
def __init__(self, plugboard, *rotors):

self.plugboard=range(26)
for pair in plugboard.split():
#swaps letters if connected in plugboard

a, b=map(Ord,pair)
self.plugboard[a]=b
self.plugboard[b]=a

self.rotors=rotors
def encode(self, message, expected=None):

out=""
#begins encoded message as empty string
for ch in message:

left, middle, right=self.rotors[-3:]
#advances the rotors
if middle.knocks():

left.advance()
middle.advance()

elif right.knocks():
middle.advance()

right.advance()
ofs=0
ch=self.plugboard[Ord(ch)]
#through the plugboard
for rotor in self.rotors[::-1]:
#through the rotors right to left and then reflector

ch, ofs=rotor.enter(ch, ofs), rotor.ofs
for rotor in self.rotors[1:]:
#back through the rotors left to right

ch, ofs=rotor.exit(ch, ofs), rotor.ofs
ch=(ch-rotor.ofs)%26
ch=self.plugboard[ch]
#back through the plugboard
out+=Chr(ch)
#concatenates message

return out

Figure 18: Portion of the code used in the Python Enigma simulator; code based off of that
produced on the blog William Edwards, Coder [16]

25

Figure 19: Python Enigma inputs; image taken by the author

Figure 20: Python Enigma outputs; image taken by the author

26

Figure 21: Mark 4 Enigma kit, pre-assembly; image taken by the author

27

Figure 22: Fully-assembled Enigma Mark 4 kit; image taken by the author

28

Acknowledgments

Thank you very much to my advisor, Dr. Richard Klima, for all of his help and guidance

throughout my project. I would also like to thank Dr. Donna L. Lillian for her insights and

advice.

Thank you as well to the many professors in the Department of Mathematical Sciences who

helped me with various aspects of this project.

I also must thank S&T Geotronics, whose technical assistance and support in assembling

the Mark 4 was much appreciated, and William Edwards, whose code provided the framework

for the Python simulator presented.

Thank you to the Office of Student Research, the Honors College, and the Department of

Mathematical Sciences for their generous support, without which this project would not have

been possible.

Finally, thank you again to the Honors College. The Chancellor’s Scholarship provided by

the Honors College made all of this possible.

29

Bibliography

[1] Appalachian State University, Recommended Computer Specifications, https://support.appstate.

edu/services/technology-support-center/recommended-computer-specifications.

[2] Bletchley Park Trust, Bletchley Park, https://www.bletchleypark.org.uk/.

[3] Franklin Heath Ltd., Enigma/Paper Enigma, http://wiki.franklinheath.co.uk/index.php/

Enigma/Paper_Enigma.

[4] Richard Klima and Neil Sigmon, Cryptology: Classical and Modern with Maplets, CRC Press, 2012.

[5] Paul Lunde, The Secrets of Codes: Understanding the World of Hidden Messages, Weldon Owen, 2012.

[6] The National WWII Museum, Enigma Archives, http://www.nww2m.com/tag/enigma/.

[7] Paul Reuvers and Marc Simons, Enigma Cipher Machines, http://www.cryptomuseum.com/crypto/

enigma/index.htm.

[8] S&TGeotronics, Enigma Replica, http://www.stgeotronics.com/Enigma-Replica_c3.htm.

[9] Wikimedia Foundation Inc., CDC 6600, https://en.wikipedia.org/wiki/CDC_6600.

[10] , Cryptanalysis of the Enigma, https://en.wikipedia.org/wiki/Cryptanalysis_of_the_

Enigma.

[11] , ENIAC, https://en.wikipedia.org/wiki/ENIAC.

[12] , History of Supercomputing, https://en.wikipedia.org/wiki/History_of_

supercomputing.

[13] , Instructions per second, https://en.wikipedia.org/wiki/Instructions_per_second.

[14] , Marian Rejewski, https://en.wikipedia.org/wiki/Marian_Rejewski.

[15] , TI-83 series, https://en.wikipedia.org/wiki/TI-83_series.

[16] William Edwards, William Edwards, Coder, https://williamedwardscoder.tumblr.com/.

30

Appendix A
def Ord(ch): return ord(ch)-ord(’A’) #convert A-Z to 0-25

def Chr(ch): return chr(ch+ord(’A’)) #convert 0-25 to A-Z

def Text(s): return "".join(ch for ch in s if ch in "ABCDEFGHIJKLMNOPQRSTUVWXYZ")

Rotors = { # name: (wiring, notches)

"1": ("LPGSZMHAEOQKVXRFYBUTNICJDW", "Y"), #Enigma D rotor

"2": ("SLVGBTFXJQOHEWIRZYAMKPCNDU", "E"), #Enigma D rotor

"3": ("CJGDPSHKTURAWZXFMYNQOBVLIE", "N"), #Enigma D rotor

"I": ("EKMFLGDQVZNTOWYHXUSPAIBRCJ", "Q"), # Enigma I rotor

"II": ("AJDKSIRUXBLHWTMCQGZNPYFVOE", "E"), # Enigma I rotor

"III": ("BDFHJLCPRTXVZNYEIWGAKMUSQO", "V"), # Enigma I rotor

"IV": ("ESOVPZJAYQUIRHXLNFTGKDCMWB", "J"), # added Enigma I rotor

"V": ("VZBRGITYUPSDNHLXAWMJQOFECK", "Z"), # added Enigma I rotor

"UKW": ("IMETCGFRAYSQBZXWLHKDVUPOJN", ""), #Enigma D reflector

"B": ("YRUHQSLDPXNGOKMIEBFZCWVJAT", ""), # Enigma I reflector

"C": ("FVPJIAOYEDRZXWGCTKUQSBNMHL", ""), # Enigma I reflector

#if simulating an Enigma D, only select from rotors 1, 2, 3, and UKW

#if simulating a Wehrmacht Enigma, only select from rotors I-V and B and C

class Rotor:

def __init__(self, table, ofs=’A’, ring=1): #intializes rotor

self.rotor, (table, notches) = table, Rotors[table]

self.table=map(Ord, table)

self.reciprocal=[self.table.index(i) for i in range(26)]

self.notches=[(n-ring+1)%26 for n in map(Ord, notches)]

self.ofs=Ord(ofs)-ring+1

self.ring=ring-1

def knocks(self): return (self.ofs%26) in self.notches

def advance(self): self.ofs+=1

def enter(self, ch, ofs): return self.table[(ch+self.ofs-ofs)%26] #letter enters rotor

def exit(self, ch, ofs): return self.reciprocal[(ch+self.ofs-ofs)%26] #letter exits rotor

class Machine:

def __init__(self, plugboard, *rotors):

self.plugboard=range(26)

for pair in plugboard.split(): #swaps letters if connected in plugboard

a, b=map(Ord,pair)

self.plugboard[a]=b

31

self.plugboard[b]=a

self.rotors=rotors

def encode(self, message, expected=None):

out="" #begins encoded message as empty string

for ch in message:

left, middle, right=self.rotors[-3:] #advances the rotors

if middle.knocks():

left.advance()

middle.advance()

elif right.knocks():

middle.advance()

right.advance()

ofs=0

ch=self.plugboard[Ord(ch)] #through the plugboard

for rotor in self.rotors[::-1]: #through the rotors right to left and then reflector

ch, ofs=rotor.enter(ch, ofs), rotor.ofs

for rotor in self.rotors[1:]: #back through the rotors left to right

ch, ofs=rotor.exit(ch, ofs), rotor.ofs

ch=(ch-rotor.ofs)%26

ch=self.plugboard[ch] #back through the plugboard

out+=Chr(ch) #concatenates message

return out

print Machine("MZ NS", Rotor("B"), Rotor("V", ’Q’, 12), Rotor("III", ’U’, 4), Rotor("I", ’O’, 8)).\

encode("ENIGMA")

#if simulating an Enigma D, leave plugboard connections empty

32

Appendix B

Figure 23: Mark 4 Enigma kit during circuit-board assembly; image taken by the author

Figure 24: Mark 4 Enigma kit during case assembly; image taken by the author

33

